Metal-dependent allosteric activation and inhibition on the same molecular scaffold: the copper sensor CopY from Streptococcus pneumoniae.

نویسندگان

  • Hendrik Glauninger
  • Yifan Zhang
  • Khadine A Higgins
  • Alexander D Jacobs
  • Julia E Martin
  • Yue Fu
  • H Jerome Coyne Rd
  • Kevin E Bruce
  • Michael J Maroney
  • David E Clemmer
  • Daiana A Capdevila
  • David P Giedroc
چکیده

Resistance to copper (Cu) toxicity in the respiratory pathogen Streptococcus pneumoniae is regulated by the Cu-specific metallosensor CopY. CopY is structurally related to the antibiotic-resistance regulatory proteins MecI and BlaI from Staphylococcus aureus, but is otherwise poorly characterized. Here we employ a multi-pronged experimental strategy to define the Spn CopY coordination chemistry and the unique mechanism of allosteric activation by Zn(ii) and allosteric inhibition by Cu(i) of cop promoter DNA binding. We show that Zn(ii) is coordinated by a subunit-bridging 3S 1H2O complex formed by the same residues that coordinate Cu(i), as determined by X-ray absorption spectroscopy and ratiometric pulsed alkylation-mass spectrometry (rPA-MS). Apo- and Zn-bound CopY are homodimers by small angle X-ray scattering (SAXS); however, Zn stabilizes the dimer, narrows the conformational ensemble of the apo-state as revealed by ion mobility-mass spectroscopy (IM-MS), and activates DNA binding in vitro and in cells. In contrast, Cu(i) employs the same Cys pair to form a subunit-bridging, kinetically stable, multi-metallic Cu·S cluster (KCu ≈ 1016 M-1) that induces oligomerization beyond the dimer as revealed by SAXS, rPA-MS and NMR spectroscopy, leading to inhibition of DNA binding. These studies suggest that CopY employs conformational selection to drive Zn-activation of DNA binding, and a novel Cu(i)-mediated assembly mechanism that dissociates CopY from the DNA via ligand exchange-catalyzed metal substitution, leading to expression of Cu resistance genes. Mechanistic parallels to antibiotic resistance repressors MecI and BlaI are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Copper Chaperone CupA and Zinc Control CopY Regulation of the Pneumococcal cop Operon

Any metal in excess can be toxic; therefore, metal homeostasis is critical to bacterial survival. Bacteria have developed specialized metal import and export systems for this purpose. For broadly toxic metals such as copper, bacteria have evolved only export systems. The copper export system (cop operon) usually consists of the operon repressor, the copper chaperone, and the copper exporter. In...

متن کامل

Two Proteins from Snake Venom have Potent Antibacterial Effects against Bacillus anthracis and Streptococcus pneumoniae

Background: Antibacterial proteins are widely expressed in snake venoms. Previously, we have isolated two immunodominant proteins with molecular weights of 14 and 65kD from the snake venom of Naja naja oxiana (N. oxiana). It was demonstrated that they had potent inhibitory effects against gram-positive bacteria, S. aureus and B. subtilis but were less effective against gram-negative bacteria, s...

متن کامل

A new structural paradigm in copper resistance in Streptococcus pneumoniae

Copper resistance has emerged as an important virulence determinant of microbial pathogens. In Streptococcus pneumoniae, copper resistance is mediated by the copper-responsive repressor CopY, CupA and the copper-effluxing P(1B)-type ATPase CopA. We show here that CupA is a previously uncharacterized cell membrane-anchored Cu(I) chaperone and that a Cu(I) binding-competent, membrane-localized Cu...

متن کامل

The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae.

High levels of copper are toxic and therefore bacteria must limit free intracellular levels to prevent cellular damage. In this study, we show that a number of pneumococcal genes are differentially regulated by copper, including an operon encoding a CopY regulator, a protein of unknown function (CupA) and a P1-type ATPase, CopA, which is conserved in all sequenced Streptococcus pneumoniae strai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical science

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2018